Гидратация алкинов: синтез по методу Кучерова

Известные химики

Окисление алкинов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

2.1. Горение алкинов

Алкины, как и прочие углеводороды, горят с образованием углекислого газа и воды.

Уравнение сгорания алкинов в общем виде:

CnH2n-2 + (3n-1)/2O2 → nCO2 + (n-1)H2O + Q

Например, уравнение сгорания пропина:

C3H4 + 4O2 → 3CO2 + 2H2O

2.2. Окисление алкинов сильными окислителями 

Алкины реагируют с сильными окислителями (перманганаты или соединения хрома (VI)). При этом происходит окисление тройной связи С≡С и связей С-Н у атомов углерода при тройной связи. При этом образуются связи с кислородом.

При окислении трех связей у атома углерода в кислой среде образуется карбоксильная группа СООН, четырех — углекислый газ СО2. В нейтральной среде — соль карбоновой кислоты и карбонат (гидрокарбонат) соответственно.

Таблица соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
R-C≡ R-COOH -COOMe
CH≡ CO2 Me2CO3 (MeHCO3)

При окислении бутина-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента СН3–C≡, поэтому образуется уксусная кислота:

При окислении 3-метилпентина-1  перманганатом калия в серной кислоте окислению подвергаются фрагменты R–C и H–C , поэтому образуются карбоновая кислота и углекислый газ:

При окислении алкинов сильными окислителями в нейтральной среде углеродсодержащие продукты реакции жесткого окисления (кислота, углекислый газ) могут реагировать с образующейся в растворе щелочью в соотношении, которое определяется электронным балансом с образованием соответствующих солей.

Например, при окислении бутина-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента R–C≡, поэтому образуется соль уксусной кислоты – ацетат калия

Аналогичные органические продукты образуются при взаимодействии алкинов с хроматами или дихроматами.

Окисление ацетилена протекает немного иначе, σ-связь С–С не разрывается, поэтому в кислой среде образуется щавелевая кислота:

В нейтральной среде образуется соль щавелевой кислоты – оксалат калия:

Обесцвечивание раствора перманганата калия — качественная реакция на тройную связь.

Домашнее задание

1. Возможна ли для алкинов цис-транс-изомерия?
2. Напишите все возможные формулы изомеров углеводорода состава С5Н8, относящихся к классу алкинов.
3. Предложите способы получения ацетилена из неорганических веществ. Напишите уравнения соответствующих реакций.
4. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б и В.
5. С помощью каких реагентов и при каких условиях можно получить бутин-2 из бутена-2? Запишите уравнения реакций.
6*. Почему во всех работах, связанных с ацетиленом, категорически запрещено применять медь или ее сплавы в реакторах, инструментах, коммуникациях и т. д.?
7*.При сжигании 2,48 г смеси пропана, пропена и пропина образовалось 4,03 г углекислого газа (н. у.). Сколько граммов воды получилось при этом?
8*. 3,92 л (н. у.) смеси газообразных алкена и алкина, содержащих одинаковое число атомов углерода, могут присоединить 40 г брома. Образовавшаяся при этом смесь имеет массу 47,2 г. Определите качественный и количественный (в процентах по объему) состав исходной смеси углеродов.

Получение алкинов

Метановый способ. Основным промышленным способом получения ацетилена является пиролиз метана и его ближайших гомологов. В качестве сырья используется природный газ. В 1868 г. французский химик М. Бертло получил ацетилен, пропуская через метан электрический разряд:

При температуре 1500 °С ацетилен является промежуточным продуктом разложения метана до углерода и водорода, поэтому основной технологический приём процесса заключается в быстром выводе ацетилена из сферы реакции и его охлаждении.

Одним из вариантов метанового метода синтеза ацетилена является окислительный пиролиз природного газа (рис. 22). Особенность этого метода состоит в том,

что в реактор вводится расчётное количество кислорода:

Помимо ацетилена в качестве продуктов реакции образуется оксид углерода (II) и водород, которые могут быть использованы для синтеза спиртов или синтетического бензина.

Карбидный способ. Давно известным и достаточно удобным способом получения этина является гидролиз (обменное взаимодействие веществ с водой) некоторых карбидов, например карбида кальция:

Карбид кальция получают взаимодействием оксида кальция, образовавшегося при обжиге (термическом разложении) карбоната кальция, с углем:

Дегидрогалогенирование. При воздействии на дибромпроизводное, в котором атомы галогенов находятся при соседних атомах углерода (или при одном и том же атоме), спиртового раствора щёлочи происходит отщепление двух молекул галогеноводорода (дегидрогалогенирование) и образование тройной связи:

Реакции присоединения

Тройная связь состоит из σ-связи и двух π-связей. Сравним характеристики одинарной связи С–С, тройной связи С≡С и связи С–Н:

Энергия связи, кДж/моль Длина связи, нм
С–С 348 0,154
С≡С 814 0,120
С–Н 435 0,107

Таким образом, тройная связь С≡С короче, чем одинарная связь С–С, поэтому π-электроны тройной связи прочнее удерживаются ядрами атомов углерода и обладают меньшей поляризуемостью и подвижностью. Реакции присоединения по тройной связи к алкинам протекают сложнее, чем реакции присоединения по двойной связи к алкенам.

Для алкинов характерны реакции присоединения по тройной связи С≡С с разрывом π-связей. 

1.1. Гидрирование

Гидрирование алкинов протекает в присутствии катализаторов (Ni, Pt) с образованием алкенов, а затем сразу алканов.

Например, при гидрировании бутина-2 в присутствии никеля образуется сначала бутен-2, а затем бутан.

При использовании менее активного катализатора (Pd, СaCO3, Pb(CH3COO)2) гидрирование останавливается на этапе образования алкенов.

Например, при гидрировании бутина-1 в присутствии палладия преимущественно образуется бутен-1.

1.2. Галогенирование алкинов

Присоединение галогенов к алкинам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкинами  красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на тройную связь.
Например, при бромировании пропина сначала образуется 1,2-дибромпропен, а затем — 1,1,2,2-тетрабромпропан.

Аналогично алкины реагируют с хлором, но обесцвечивания хлорной воды при этом не происходит, потому что хлорная вода и так бесцветная)

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкинов

Алкины присоединяют галогеноводороды. Реакция протекает по механизму электрофильного присоединения с образованием галогенопроизводного алкена или дигалогеналкана.

Например, при взаимодействии ацетилена с хлороводородом образуется хлорэтен, а затем 1,1-дихлорэтан.

При присоединении галогеноводородов и других полярных молекул к симметричным алкинам образуется, как правило, один продукт реакции, где оба галогена находятся у одного атома С.

При присоединении полярных молекул к несимметричным алкинам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкинам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.
Например, при присоединении хлороводорода HCl к пропину преимущественно образуется 2-хлорпропен.

1.4. Гидратация алкинов

Гидратация (присоединение воды) алкинов протекает в присутствии кислоты и катализатора (соли ртути II). 

Сначала образуется неустойчивый алкеновый спирт, который затем изомеризуется в альдегид или кетон.

Например, при взаимодействии ацетилена с водой в присутствии сульфата ртути образуется уксусный альдегид.

Гидратация алкинов  протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов присоединение воды преимущественно по правилу Марковникова. 

Например, при гидратации пропина  образуется  пропанон (ацентон).

1.5. Димеризация, тримеризация и полимеризация

Присоединение одной молекулы ацетилена к другой (димеризация) протекает под действием аммиачного раствора хлорида меди (I). При этом образуется винилацетилен:

Тримеризация ацетилена (присоединение трех молекул друг к другу) протекает под действием температуры, давления и в присутствии активированного угля с образованием бензола (реакция Зелинского):

Алкины также вступают в реакции полимеризации — процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn   (M – это молекула мономера)

Например, при полимеризации ацетилена образуется полимер линейного или циклического строения.

… –CH=CH–CH=CH–CH=CH–…

Альдегиды. Реакция Кучерова. Полимеризация винилацетата, фенолоформальдегида

Задание 432 Как из карбида кальция и воды, применив реакцию Кучерова, получить уксусный альдегид, затем уксусную кислоту и винилацетат. Напишите уравнения соответствующих реакций. Составьте схему полимеризации винилацетата. Решение: Из карбида кальция и воды можно получить ацетилен (гидролиз карбида кальция):

Вода присоединяется к ацетилену особенно легко в присутствии солей ртути (II) в сернокислом растворе (Кучеров, 1881). При этом из ацетилена получается уксусный альдегид (ацетальдегид). Первой стадией процесса является присоединение молекулы воды по тройной связи с образованием гипотетического винилового спирта (енольной формы уксусного альдегида):

Уксусный альдегид присоединяет водород (восстанавливается) по двойной связи, даёт при этом этиловый спирт:

Уксусная кислота присоединяется к ацетилену в присутствии Н3РО4 с образованием винилацетата – мономера для синтеза поливинилацетата, из которого получают поливиниловый спирт:

Задание 443 Какое соединение называют альдегидами? Что такое формалин? Какое свойство альдегидов лежит в основе реакции «серебряного зеркала»? Составьте схему получения фенолоформальдегидной смолы. Решение: Органические вещества, содержащие группу >С = О, называемую карбонильной группой или карбонилом, в которой одна валентность атома углерода занята алкильным радикалом, другая – водородом:

Муравьиный альдегид (формальдегид)

формалинреакцией «серебряного зеркала»

Схема получения фенолформальдегидных (бакелитовых) смол:

Реакция – гидратация – ацетилен

Наряду с реакцией гидратации ацетилена по М. Г. Кучерову, также имеют значение процессы каталитической полимеризации ацетилена с образованием бензола и нафталина и синтез ацетиленовых спиртов при взаимодействии ацетилена с альдегидами.

Соединения переходных металлов катализируют реакцию гидратации ацетиленов. Метилацетилен и этилацетилен в тех же условиях образуют ацетон и метил-этилкетон соответственно.

В основе этого процесса лежит реакция гидратации ацетилена в аиетальдегид, который затем окисляют в уксусную кислоту.

В 1881 г. Кучеров открыл реакцию гидратации ацетилена.

Долгое время большое практическое значение имела реакция гидратации ацетилена, позволяющая получать из последнего уксусный ангидрид и затем уксусную кислоту. Алкины гидратируются в кислой среде труднее, чем алкены. Однако, как нашел М. Г. Кучеров, в присутствии солей двухвалентной ртути этот процесс существенно облегчается. Полагают, что вначале Hg2 образует с ацетиленом я-комплекс, который затем подвергается нуклеофильной атаке со стороны молекулы воды. Полученный в результате этого меркурирован-ный виниловый спирт изомеризуется ( см. разд.

Долгое время большое практическое значение имела реакция гидратации ацетилена, позволяющая получать из юследнего уксусный ангидрид и затем уксусную кислоту. Эднако, как нашел М. Г. Кучеров, в присутствии солей двухвалентной ртути этот процесс существенно облегчается. Пола-чают, что вначале Hg2 образует с ацетиленом я-комплекс, который затем подвергается нуклеофильной атаке со стороны иолекулы воды. Полученный в результате этого меркурирован-дый виниловый спирт изомеризуется ( см. разд.

В безградиентном проточном реакторе изучена кинетика реакций гидратации ацетилена в системе GuCl-NH G1 – HG1 – Н2О, а также в системе, содержащей, кроме указанных компонентов, Gu2S в донной фазе. Показано, что в отсутствие Cu2S реакцию гидратации катализируют в основном малоядерные по меди комплексы ( CuCl2 -, Cu2CIs – и CuCl – -), а в присутствии сульфид-иона образуются новые купресульфидные комплексы Cu4ClsS – и Cu Cl4S -, которые являются значительно более эффективными катализаторами гидратации ацетилена. Понижение скорости реакции диме-ризации ацетилена при введении сульфид-иона в контактный раствор связано с понижением парциального давления ацетилена над раствором.

Появление многоядерного сульфидного комплекса приводит к увеличению порядка реакции гидратации ацетилена и, кроме того, меняет механизм реакции.

Что касается катализа гетеролитических реакций катионами, то такая возможность установлена в реакции гидратации ацетилена.

В развитии химии и промышленности полимеров важнейшую роль сыграла реакция М. Г. Кучерова ( 1881) – реакция гидратации ацетилена и получения уксусного альдегида – исходного вещества для производства полимеров. Она явилась основой промышленного синтеза сложных и простых виниловых эфнров, применяемых для получения ряда современных полимеров, в том числе и широко используемого в строительной технике поливинила-цетата.

Поскольку величины сСи и сСи2 по-разному изменяются в процессе опыта, было интересно выяснить роль валентных форм меди в реакции гидратации ацетилена.

В учение о катализе большой вклад был внесен русскими химиками; так, например, М. Г. Кучеров ( 1871) открыл реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей; М. М. Зайцев ( 1877) описал реакцию восстановления различных органических соединений над платиной; Н. А. Меншуткин ( 1877) провел классические исследования в области изучения скоростей этерификации; А. М. Бутлеров ( 1876) открыл реакцию уплотнения олефинов под действием серной кислоты.

Промышленность на основе ацетилена возникла в годы первой мировой войны, когда в промышленном масштабе был реализован синтез ацетальдегида по открытой в 1881 г. М. Г. Кучеровым реакции гидратации ацетилена в присутствии солей ртути.

Хотя альдольный способ нашел промышленное применение в Германии, в основе отдельных стадий его лежат процессы, предложенные и разработанные русскими химиками. Так, реакция гидратации ацетилена в уксусный альдегид была открыта еще в 1881 г. М. Г. Кучеровым и носит название реакции Кучерова.

В других случаях связь с кислотностью по Льюису или апротон-ной кислотностью выражена значительно более ярко. Это – реакции гидратации ацетилена и гидролиза хлорбензола, некоторые реакции галогенирования и гидрогалогенирования, многочисленные реакции полимеризации олефинов и окисей олефинов с образованием высокомолекулярных продуктов и другие.

Применение

Алкины являются сырьем для производства большого количества органических соединений и материалов: альдегидов, кетонов, растворителей (тетрагалогенэтанов), исходных веществ для получения синтетических каучуков, поливинил-хлорида и других полимеров (схема 5).Ацетилен является ценнейшим горючим с очень высокой теплотой горения.

Алкины или ацетиленовые углеводороды широко используются в промышленности. Можно с уверенностью сказать, что благодаря ацетилену произошло расширение многих отраслей промышленности, в которых применяется органический синтез. Его производство в мировых масштабах составляет не один миллион тонн.

Конечно же, в своем большинстве, ацетилен нашел свое применение при сварке, а так же при резке металлов, так как при горении ацетилена выделяется много тепла и его температура пламени достигает свыше 2800 градусов и способна расплавить многие металлы.

Также он нашел широкое применение при производстве различных поливинилхлоридов, растворителей и клея.

При рассмотрении схемы 5, изображенной выше, можно с уверенностью сделать вывод, что ацетилен занимает ведущее место в промышленности, так как является для нее важным химическим сырьем.

Ацетилен также применяют, и довольно таки широко, в органическом синтезе разных веществ, таких как уксусная кислота, а также в хлорировании, гидрохлорировании и др.

Кроме этого, ацетилен является одним из исходных веществ при получении синтетических каучуков, поливинилхлорида, а также других полимеров.

Поливинилхлорид, конечно же, является важным продуктом в химической промышленности и на его основе изготавливают разные виды пластмассы, но следует знать, что при неправильной утилизации он может создать экологические проблемы, так как его время разложения длится не одну сотню лет и, к сожалению, вторичного способа его переработки еще не придумали.

Но следует знать и меры безопасности и, ни в коем случае ПВХ не сжигать, так как он при горении образует ядовитые хлорорганические соединения.

А знаете ли вы, что в конце девятнадцатого и до начала двадцатого века были популярны ацетиленовые светильники, которые широко использовались для освещения улиц, железнодорожных путей, в водном транспорте, а также в других бытовых потребностях, так как его источником был дешевый карбид кальция.

А знаете ли вы, по какому принципу работали карбидные фонари? Оказывается, что в заполненный карбидом кальция фонарь капельным способом поступала вода и дальше, в результате полученный ацетилен попадал в горелку и был использован для освещения.

Конечно же, сейчас уже ацетиленовые фонари практически нигде не применяются, разве только при производстве походного снаряжения, да и то, в небольших количествах.

Что получают реакцией Кучерова?

Реакцией Кучерова называют гидратацию ацетиленовых соединений с образованием карбонильных соединений. Открыта русским химиком М.Г. Кучеровым в 1881 году. Катализатор — соли ртути Hg 2+ .

Только в реакции с ацетиленом образуется уксусный альдегид. Во всех остальных реакциях (с гомологами ацетилена) образуются кетоны.

P.S. Мы нашли статью, которая относится к данной теме, изучите ее — Алкины

P.S.S. Для вас готов следующий случайный вопрос. Мы сами не знаем, но вас ждет что-то интересное!

Беллевич Юрий Сергеевич 2018-2022

Текст и опубликованные материалы являются интеллектуальной собственностью Беллевича Юрия Сергеевича. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов вопроса и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Получение

В лаборатории альдегиды получают окислением первичных спиртов. В качестве окислителей применяют оксид меди (II), пероксид водорода и другие вещества, способные отдавать кислород. В общем виде это можно показать так:

В промышленности альдегиды получают различными способами. Экономически наиболее выгодно получать метаналь непосредственным окисление метана кислородом воздуха в специальном реакторе.
Чтобы метаналь не успел окислиться, смесь метана с воздухом через зону реакции пропускают с большой скоростью.
Метаналь получают также окислением метанола, пропуская его пары вместе с воздухом через реактор с раскаленной медной или серебряной сеткой. Однако этот способ экономически менее выгоден.
Этаналь можно получить и гидратацией ацетилена в присутствии солей ртути в качестве катализатора (реакция М. Г. Кучерова). Так как в этой реакции в качестве катализатора используют ядовитые вещества — соли ртути, то в последнее время разработан новый метод получения ацетальдегида: смесь этилена с воздухом пропускают через водный раствор солей меди, железа и палладия.

Тримеризация алкинов

При пропускании этина над активированным углем образуется смесь продуктов, одним из которых является бензол:

Впервые подобную реакцию в 1866 г. осуществил М. Бертло. При нагревании ацетилена до 600 °С ему удалось получить небольшое количество бензола. Спустя 60 лет русский химик Н. Д. Зелинский (1861—1953) обнаружил, что катализатором данной реакции является углерод (активированный уголь). Даже при более низкой температуре в присутствии активированного угля скорость реакции значительно возрастала, а выход бензола увеличивался до 90%. С тех пор эта реакция носит имя Зелинского.

Гидратация гомологов ацетилена

Гидратация гомологов ацетилена приводит к образованию кетонов. Присоединение воды к алкинам-1 происходит по правилу Марковникова. Например, при гидратации пропина образуется диметилкетон (ацетон):

Рисунок 5.

Из терминальных алкинов $R-CHC-H$ при гидратации получают почти всегда метилкетоны $R-CO-CH_3$, а из двцзамещенныих $R”-CH_2-R’$ ($R”$ и $R’$ – различные по строению алкильные группы) – кетоны, образование которых подчиняется такой такой тенденции: для первичного $R$ ($CH_3$- или $CH_3-CH_2-$) и вторичного или третичного $R$ ($-CH(CH_3)_2$ или $-C(CH_3)_3$) карбонильная группа $C =O$ образуется в основном в $\alpha$-положении к вторичному или третичному атому углерода алкиле $R$. Так, при гидратации метилизопропилацетилена в реакционной смеси будет преобладать етилизопропилкетон по сравнению изобутилметилкетоном:

Рисунок 6.

Катализируемые кислотами и ионами ртути (II) реакции присоединения воды по месту тройной связи алкинов протекает строго по правилу Марковникова. Следовательно, гидратация как терминальноых, так и нетерминальных алкинов всегда приводит к кетонам, например для циклических и линейных алкинов:

Рисунок 7.

Альдегиды

Не часто встречаются в природе в отдельном виде, но, несомненно, играют важную роль в физиологических процессах растений и животных. Общая формула альдегидов CnH2nO.

Многие альдегиды имеют специфический запах. Высшие альдегиды, в особенности непредельные, используются в пищевой промышленности и парфюмерии.

Номенклатура и изомерия альдегидов

Названия альдегидов формируются путем добавления суффикса «аль» к названию алкана с соответствующим числом атомов углерода: метаналь, этаналь, пропаналь, бутаналь, пентаналь и т.д.

Для альдегидов характерна структурная изомерия: углеродного скелета, межклассовая изомерия с кетонами.

Получение альдегидов и кетонов

Этот способ также просто осуществить в лабораторных условиях. При пиролизе (нагревании без доступа кислорода) кальциевых или бариевых солей карбоновых кислот возможно получение кетонов.

В присутствии катализатора и при нагревании спиртов от гидроксогруппы и прилежащего к ней атома углерода отщепляется по атому водорода. В результате образуется карбонильная группа.

Реакцией Кучерова называют гидратацию алкинов в присутствии солей двухвалентной ртути.

В результате такой реакции ацетилен превращается в уксусный альдегид. Все остальные его гомологи: пропин, бутин, пентин и т.д. превращаются в соответствующие кетоны.

В результате такого гидролиза образуются двухатомные спирты, в которых две OH-группы прилежат к одному атому углерода. Такие соединения неустойчивы и распадаются на карбонильное соединение (альдегид или кетон) и воду.

В промышленности окислением метана при температуре 500 °C и в присутствии катализатора получают формальдегид.

В прошлой теме, посвященной фенолам, мы касались данного способа. В результате такой реакции образуется не только фенол, но и ацетон.

Химические свойства альдегидов и кетонов

Запомните, что для альдегидов и кетонов характерны реакции присоединения по карбонильной группе. Это является важным отличием альдегидов от карбоновых кислот, для которых реакции присоединения не характерны.

Для понимания механизма реакции важно вспомнить об электроотрицательности. В карбонильной группе кислорд, как более электроотрицательный элемент, тянет электронную плотность на себя от углерода

На атоме кислорода возникает частичный отрицательный заряд (δ-), а на атоме углерода частичный положительный (δ+).

Основы школьного курса физики подсказывают, что отрицательный заряд притягивает положительный: именно так и будет происходить при присоединении различных молекул к карбонильной группе альдегидов и кетонов.

В результате полного окисления, горения, образуется углекислый газ и вода.

Альдегиды легко окисляются до карбоновых кислот в лабораторных условиях. Это осуществляется с помощью известной реакции серебряного зеркала. Данная реакция является качественной для альдегидов.

Кетоны, в отличие от альдегидов, в реакции окисления не вступают.

Обратите особое внимание, что при написании реакции с аммиачным раствором серебра в полном виде, правильнее будет указать не кислоту, а ее аммиачную соль. Это связано с тем, что выделяющийся аммиак, который обладает основными свойствами, реагирует с кислотой с образованием соли

Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Rate article